
Dynamic Voltage and
Frequency Scaling

on Embedded Systems
By Emerson Jacobson



What is a GPU
● Graphics Processing Unit

● GPGPU - General Purpose GPU

● Libraries CUDA (Nvidia) and ROCm (AMD)

https://normbest.letua.info/nvidia-cuda-75-for-mac.html



SIMT
● Single Instruction Multiple Thread

● Can become inefficient with branching



Grid/Blocks/Threads

http://tdesell.cs.und.edu/lectures/cuda_2.pdf



Block Scheduling



RTX 2080
● 46 SM (Streaming 

Multiprocessor)

● 2944 CUDA Cores



Embedded Systems
Jetson Nano (10W)

● 128 GPU Cores

● 4 CPU Cores

Jetson AGX Xavier (55W)

● 512 GPU Cores

● 8 CPU Cores



Jetson Architecture



The Jetson AGX Xavier

● 8 SM

● 64 Cores per SM



Power Consumption

AGX Max Power (55W)

RTX 3090

Nano Max Power (10W)



Power Consumption
● “In field” applications

● Battery powered



DVFS
● Dynamic Voltage and Frequency Scaling

● No real support for modifying voltage

○ Reduce frequency -> reduce power consumption



DVFS - Latency Deadlines
● Need to meet QoS

● Want latency within 99%



DVFS - Power Usage



DVFS - Frequency Scaling
● Find the optimal frequency for some load



DVFS - Power Savings



DVFS - Heterogeneous Systems
● CPU and GPU share the power cap

○ Balance power to CPU or GPU



DVFS - AGX Power Modes



DVFS - Heterogeneous Power Scaling
● Power split based off current CPU/GPU load

● DVFS manager use current CPU and GPU load

● jetson_clocks AGX

GPU

Deep Learning 
Service

CPU

DLA

DVFS Manager
● CPU Load
● GPU Load



FLOPs Benchmark
● Floating Point Operations Per Second

● Loop ran doing matrix multiplication on the GPU

● Number of operations are known, time it takes can be measured

○ FLOPs = operations/time

● Frequencies are static for benchmarking purposes



FLOPS by Frequency



FLOPS by Frequency



Deep Learning Benchmarks
● Inference performance

● Uses Nvidia’s TensorRT

● Throughput measured based on latency

● Batch sizes, streams

https://github.com/NVIDIA-AI-IOT/jetson_benchmarks



TensorRT
● Deep learning inference optimizer

○ Reduced precision -> reduced latency

● inception_v4 -> TensorRT engine

● Use ‘trtexec’ for benchmark

https://developer.nvidia.com/tensorrt



Deep Learning Performance



Deep Learning Energy



Future Work
● Scaling CPU & GPU with current workload

● Run benchmarks on Jetson Nano

● Usage of DLAs on Jetson AGX

● Non-TensorRT benchmarking

○ Caffe

AGX

GPU

Deep Learning 
Service

CPU

DLA

DVFS Manager
● CPU Load
● GPU Load



Questions?


